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of ma~jor importance in the determination of residual stress vad
fraction is the accuracy of the measurement of the scattering angle M2eP)
of a Bragg peak. This determines the accuracy of the interplanar (d)
spacing and hence the strain and stress. In the U.S., the most commonly
accepted method of determining peak position is a parabolic fit near the
top of a peak. (While a diffraction pMk is not parabolic, this is a
satisfactor function near the maximum". The error in this procedure has
been derived; nd tested, and it has been shown that a multipoint fit with
a least 7 points is rapid and as precise or more precie than the centroid,
the bisector of the half width, or cross correlation , 1 except for sharp
peaks in which case the centroid or cross correlation are slightly better.
Thus a parabolic fit is generally useful and, since a least-squares fit to
this function is readily carried out on modern aicro-processors, automation P0 /l
of a stress measurement is possible, including evaluation of errorsf--ui 3
this procedure, with intensities across a peak at i 29.i values, the var-
iance in peak position, o2 (2 ep), is:1

02(2e ) (82!)2

The first term on the right-hand side i: then evaluated for a parabola, 2

and the second has been shown by Wilson to be:

2(Ii ) = Ii/t for a fixed time, t, at each position, (2a)

= I1/c for fixed count, c, at each position. (2)

That these equations are correct is indicated in Fig. 1. Typical examples
of the effect of error in 2ep on stress determinations are illustrated in
Figs. 2 and 3.

These figures illustrate one particular goal of this paper. There is
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increasing interest in measuring the stresses in second phases as well as
the matrix in multiphase materials, or in the strengthening phases in com-
posites. Because of their low volume fraction, and their structure and its
perfection, peaks with reasonable intensities are available only at inter-
mediate angles, where the errors may be too large to obtain reliable stress
values. Perhaps greater precision can be obtained by curve fitting the
entire diffraction peak to some suitable function other than a parabola.
Furthermore, the speed of stress measurimgnts has been greatly reduced by
the use of position sensitive detectors" , by means of which an entire
peak profile is recorded at the same time and no detector motion is re-
quired - a kind of digitized return to filml Why not use a fit to the
entire peak? The data is already available in the same time it takes to
obtain the information for a parabolic fit.

It is with these two points in mind that we have examined the use of
profile fits in the measurement of a peak position.

Two functions were chosen to compare to the parabolic fit. he first
of these is a Modified Lorentzian, proposed by Mignot and P t'-

K (2e.) 2e p -6) nI ('1 (20i) = Io[OS K"+(e-e]"(3)
1 0 a K2  e-Z

Measurements are made at many 2ei and a solution is sought for a, 2e
the maximum intensity, K which is related to the peak width, 6 to aount
for small peak asymmetry and n. The cosine term forces the function to
fall more rapidly with 2e in the tail of the peak than a pure Lorentzian
function. This equation can be modified to include a K - K doublet
(with separation A): - 02

toal K K
Itotal = i (2e8) + IiI 2 - A)4

The term 6 was chosen as zero, because preliminary tests (multiple
scans of peaks) indicated that it led to large variations in 2eo without
much improvement in the fit to the entire shape. Both singlet, doublet
forms were tried.

The second function was a Pearson Type VII distribution8.

Ii(2ei) = I012+ (20 2eP )2 M5)

The terms Io and a are sought in the profile fitting procedure. The
parameter a varies with peak shape For narrow peaks m = 1 is appropriate,
in which case Eq. 5 is a Lorentzian. When m approaches infinity it can be
shown that Eq. 5 approaches a Gaussian function. Values of m = 1-3 and
infinity were tried. Again, two terms can be added to form a doublet, and
this was attempted for m - 3.

Backgrounl was subtracted. For the case of the parabolic fit, this was
measured at 3P 20 (before) the peak and this constant value was sub-
tracted from all data points. This was adequate because only points in the
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vicinity of the peak (the top 15 pet) were employed in the fit. For the
other two functions a linear variation was assumed and the slope and inter-
cept were sought in the solution, or the values were fixed from the data.
If these were included in the solution, there were 7 variables for the
Modified Lorentzian (these two, plus I., K, a, n and 2e ). With the
Pearson Type VII there were four, (two for background pus Io, and a).

While a least-squares solution is possible for a parabolic fit, this is
not as simple for the other two functions (except for the simpler Pearson
Type VII forms). A modified simplex method was adapted in this study9 ," 0 .
Convergence was tested agaifist the significance ratio between the best and
worst points of the simplex, whose points were defined in terms of a
goodness of fit, or reliability index, R:

-n an i-lLci xlO0. (6)
irlon bs

i=I

In the simplex procedure, a multidimensional R space is formed (n + 1
dimensions, where n is the number of unknowns), one point from initial
guesses at parameters and the others from fractional changes in each of the
"guesses". Changes are then made in these values in a systematic way to
reduce the range of these R values until by some test it is found that all
values are essentially identical. This was judged by forming r, the ratio
of the reliability index of the worst point . the simplex, to that of the
best. This ratio was subjected to an F test , that is r was calculated
as:

r P .F +IY (7)pn-p, =[n-p p,.n-p, + 7

Here p is the number of parameters, and a is the probability of incor-
rectly ccncluding that the best and worst points in the simplex are dif-
ferent. Iterations were continued until r r . The test value was
1.00018, which corresponds to an a value les;t 0G.00 5. Values even
closer to unity were attempted, but beyond this value the error in 2% _was
not substantially improved. It is important in using the simplex procmdure
to make appropriate first guesses at the change in variables, so that the R
values are far apart, and to accelerate convergence only changes in the
parameters which decreased R were accepted; if an improvement occured, the
change was increased in the same direction. In effect, the point with the
worst R is moved through the centroid of the (n + 1) sided polygon of R
values to lower R. Finally, the entire simplex was ontracted by moving
all points in any iteration half the length of a side of the polygon
toward the best point. Even with all these precautions, typically nearly 5
minutes were required on PDP 11/34 to accomplish the -150 iterations in
the case of a Modified torentzian with 7 parameters. This was reduced to
-1.5 minutes for 5 parameters, and was -45 seconds for the Pearson Type VII
(with 5 parameters).

Our procedure was to remeasure a peak many times (typically 10) and to
examine the variation in fitting parameters. Accordingly, we employed
various statistical tests to judge the results. The mean of 20 and R for
any set (n) of peaks fit by a single method was obtained, as wel as the
observed variance, S2.
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717#S2 (<29p>) x (29

.,c.) n -z (2e1 - <2ep>)(

and as well the true variance o = S2/n. The range around the mean with
95% confidence limits was formed as <28 > + 1.96a (28 ). The con-
fidence limits for the variance was established with a chi-squared test
(C) at the 1-6 confidence level as follows:

i < _<a (9)

RFr a given peak, the use of different profile fitting methods could
lead to different 2 ea. A test was made to ascertain if such differences
were real or due to bounting statistics. Let A be the number of different
profile methods for any one peak. Then the 'profile method" variance was
defined as:

S2 (<2ep>) t X (2e <2ep>)a , (10)

where < > ; I is the number of peak positions for the

different methods for the same peak.

The pooled variance for all methods is defined as:

S f1(1

With n peaks for each method, there are then (n-I) degrees of freedom

for each method, and I (n-1) for SP (and [P -1) for Si. The ratio:

nS2
= ,(12);j P

was then tested. If Eq. 12 is less than the tabulated F value for some
confidence level, the difference in mean position is due to random counting
statistics (with that confidence).

Rm S

Samples were chosen to represent a typical range of peak intensities
and peak widths, and to include secord-phase peaks. Their preparation and
the peak characteristics are described in Table I. The diffraction cordi-
tions are in Table II. The data were obtained on a microprocessor control-
led diffractometer. The parabolic fit was performed on line and data were
obtained in a three stage point-counting procedure described in Ref. 2, to
locate the peak and the range of 2e covering the top 15 pct. Seven
points in this range were employed. Fbr the other functions, data was
obtained with the same system (without removing the specimen) at .02029
intervals (each counted for 15 seconds) across the entire profile, and
transferred to a PDP 11/34 minicomputer for data processing. The data were
not corrected for the Lorentz-polarization factor or scattering factor
variation, as would be needed in actual stress analysis; only the fit to
the shape and the value (and error) of 28p were of interest here.
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As with the parabolic fit, the Pearson Type VII distribution fits only
the main part of the peak, but falls more rapidly in the tails than the
observations, the difference being larger as I'm" increases. (The region
f it was actually similar to that for a parabola.) Oni the other hand, the
Modified torentzian fits the entire shape quite well. A comparison of the
various fits with ten recordings of three different peaks is given in Table
III, and samples of the fits are shown in Fig. 4. A fixed linear back-
ground was employed for the results in this table; solutions with a var-
iable background had worse errors in peak position, although with the
,significance tests at the 95 pat level these apparent differences were not
necessarily real. More importantly, the errors in the fitting parameters
showed drastic decreases, and the values of K and 10 approached the
measured peak width and intensity when the background was fixed prior to
the solution for the other parameters.

It is evident from the table, that the Modified Lorentzian and para-
bolic fit provides similar error values for all peak shapes. This is true
of the Pearson Type VII function as well but the value of m is different
for each peak type. Thus, some kn~owledge of the peak shape would be
required prior to fitting, which would make automation more difficult than
for the other functions. Also, the Goodness-of-Fit values are quite high
with this function.

Comparing the method and pooled variances indicated that the slight
differences in peak positions in Table III for the various functions are
significant in all cases except for the broad peaks. In this latter case
the low intensity leads to larger scatter so that any difference is masked.

Note especially that the parabolic fit gives the lowest errors of any
method for weak or broad peaks.

The 60/40 brass sample exhibited a doublet whose resolution varied with
tilt of the sample to the x-ray beam (as would be done in a stress measure-
ment). Examples of f its to this peak are given in Fig. 5, and a summary of
results in Table IV. The singlet forms of the Modified lorentzian and
Pearson Type VII functions gave values of A 2e[(4,- 00) - (4.= 450))
closer to the values of the parabola, despite the fact that the <R> values
were lower with the doublet form. From the analysis of variance at both
angles, the differences in peak positions with each fit technique in this
table were significant.

Possible limitations in the data that cou.ld occur in practice were also
explored. Firstly, it may not be possible to record the entire peak.-
another one nearby may overlap on one side, or the equipment itself could
preclude recording the entire peak. Some results are shown in Table V.
With a Modified Ijorentzian and a sharp peak the "correct" (parabolic) peak
position, a low error in this value, and a low R value are all obtained
with data that only just reaches the peak's maximum. Similar tests with a
broad profile showed that a wider range was necessary, but only a few
tenths of a degree 2e beyond the maximum is adequate. Analysis of
variance tests confirmed that beyond 68.820, any change in peak position is
solely due to random fluctuations, and the peak values obtained with data
up to and beyond this angle are not distinguishable from the value for the
entire peak, at 95 pct confidence.

Next, with the Modified Lorentzian, the effect of time per data point
and the number of data points were explored, Table VI. The error is not
statistically different at the shorter conting time, or smaller number of
points.

2 2.
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[Fbr further details the reader is referred to Ref. 12.3

1. The parabolic fit has the best overall ability to determine peak
positions over a wide range of shapes.

i I A Modified Lorentzian can be quite helpful if only a part of a peak can
be explored, especially for sharp peaks.

- , The errors in a Modified iorentzian fit are not very sensitiveoto
counting time. With a position sensitivedetector precision comparable
to that for a parabolic fit can be obtained in about one tenth the
time As all of the data are 'ecorded for either fit with this type of
dete, a ccnsiderable saving in measurement time is possible with a
Modif Lorentzian function. Unfortunately, the fit itself takes the
order 1 minute on a miniprocessor. If this time could be reduced
wi specially designed microprocessor for this purpose, this fun-
ct offers a way of drastically reducing the time for stress measure-

ts in the field, beyond that already achieved by the use of a PSD.

) 2ons-of-Fit is not necessarily an accurate gage of error in peak
posit' n(Ebr example, in Thble III, part (c), similar values of R
are as ted with widely different peak locations.)

This research was sponsored by CNR under Grant No. N00014-80-C116.
Prof. P. Georgopoulos suggested the use of the simplex procedure. Assis-
tance with the experiments by G. Raykhtsaum, P. Rudnik, P. Zschack and Dr.
I. C. Noyan are gratefully acknowledged. This paper represents a portion
of a thesis submitted (by Timothy J. Devine) in August, 1984 as partial
fulfillment of the requirements for the M.S. degree at Northwestern Univer-
sity.
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Divergent Slit 10 All

Receiving Slit .150 Annealed 1008,
1074, Brass

Beam Size on Sample 2.5mn x 2.Smm All
at4 = O

(approximate)

Tube Target Cr All

Tube Voltage- 40kv - 1ima Annealed 1008
Current 35kv - 10ma Deformed 1008

40kv - 15ma 1074
35kv - 10ma Brass

Filter Vanadium Oxide All

Soller Slits None used All

III I III

+ Observed
49. 0 Statistical + Observed

a Statistical
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CaJNTS TZ1 Ct~S1 NS

FIGs 1. Comparison of statistical error in intensity measurements with
observed error. Left: Fixed counts, Eq. 2a, Right: Fixed time
measurements, Eq. 2b. Twenty five replications of a point on a
211 ferrite reflection from a 1008 steel was employed with
filtered CuK8 radiation.



CCMPARISCN OF FIT MEI)fODS1

METHOD MEAN OBSERVED 95% LIMITS MEAN
2 p EROR ON ERR 4  G00CNESSOF-

(x10-2  (xl0 FIT

degrees) degrees)

A) Curve pe: hirp (Ainealed) Ferrite 110, 1008 Steeli
Parabolic' 68.82193 .287 .197, .514 29.91

Pearson Type VII3

m = 3 68.81368 .473 .326, .863. 30:24
m = 2 68.82818 .172 .118, .314 32.43
M = 1 68.82902 .282 .194, .515 41.77
M = 68.80705 .172 .118, .314 33.43

Modified trentzian2 68.83298 .135 .093, .246 1.75

B) Curve Type: Broad (deformed) Ferrite 11o, 1008 Steel

Parabolic 68.53719 .173 .199, .316 1.16

Pearson Type VII
m = 3 68.53853 .511 .352, .870 20.53
m = 2 68.54362 .334 .229, .609 9.95
m = 1 68.53595 1.40 .963,2•56 17.07
M = 68.54447 .277 .191, .506 11.21

Modified lorentzian 68.54165 .351 .242, .641 1.88

C) Curve Type- Weak Fe3C 112 + 021, 1074 Steel

Parabolic 57.42794 1.05 .723, 1.92 2.79

Pearson Type VII
m = 3 57.35688 .263 .181, .480 26.5
m = 2 57.36416 1.78 1.22, 3.25 17.2
M = 1 57.36556 .785 .540, 1.43 6.98
M = 57.40937 5.15 3.54, 9.40 4.49

Modified Lorentzian 57.40813 1.28 .881, 2.34 2.11

1. 15 Seconds per point, 10 peaks per mean, Fixed background - 5 points
either side of peak used to fix line (for parabola, see ref. 2).

2. Parabolic fit is 7 pt. fit to top 15%. A single-valued background is
subtracted before fit.

3. All Pearson Type VII and Modified Lorentzian utilized 90 pts. taken
at .020 2 increments, except for Fe3C, for which 58 points were
measured.

4. Values listed are low and high limits respectively.
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TABLE V.

PARTIAL FIT OF SHARP PEAK (1008 STEEL) TO MODIFIED LORENTZIAN

TWO THETA 2ep> OBSERVED <R>
VAUJE OF o2 8) EMRr
LAST POINT "b

68.70 68.77712 .296E-1 1.48
68.74 68.79541 . .584E-2 1.47
68.78 68.82561 •341E-1 1.70
68.82 68.83322 •1OE-2 1.74
68.86 68.83303 •836E-3 1.74
68.90 68.83298 .135E-2 1.75
68.94 68.83226 -113E-2 1.75
68.98 68.83322 •11OE-2 1.74
69.02 68.93300 .937E-3 1.72

10 second count per point, 0.020 2e intervals.

Lowest two theta value in all cases was 67.50.

'Value of Last Point' indicates the highest two theta value used in
analysis.

Peak value, as determined from the full angular range fit, is 68.83299
+ .00135 u2e.

A fixed background, obtained from 10 data points on the low angle side of
the curve, was used.

TARLE VI

EFFECT OF NUMBER OF POINTS-MODIFIED LORETZIAN, BROAD CURVE (1008 STEEL)

TIME NUMBER OF MEAN PEAK OBSERVED <R>
PER POINT POINTS 1  POSITION ERROR
(SEC.) (0 2) (x10- 2 )

1 22 68.54718 .572 3.09
90 68.54763 .434 3.59

15 22 68.54224 .360 2.07
90 68.54165 .351 1.88

1. The 22 points were selected as every fourth point of the full 90 point
fit. Background line determined from 5 points on either side of the
peak.
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